
Operation
Natural for DL/I operates as a standard DL/I application.

Prior to running a Natural application, a PSB must be scheduled. The method for scheduling PSBs varies depending
on the actual environment (see the relevant sections under PSB Scheduling), but as for any other DL/I application,
PSB scheduling is a requirement.

This section covers the following topics:

Procedure NATPSB
Procedure NATDBD
Procedure NATUDF
Generation of DDMs from DL/I Segment Types

Procedure NATPSB
Every PSB required by DL/I to accommodate Natural requests must be processed by the Natural batch utility
NDPBNSB0. This utility stores DL/I PSB information, in a form suitable for Natural, on the FDIC system file. This
information is referred to as NSB control block. A batch procedure called NATPSB has been established for this
purpose.

A sample NATPSB job has been included in the source library from the installation tape. The information used to
create NSB control blocks comes from the actual PSBGEN source. It is essential that the same input is used for the
NATPSB procedure as was used for the DL/I PSBGEN. Otherwise, unpredictable results are likely.

The NATPSB job is a three step procedure:

The first step executes the normal DL/I PSBGEN procedure. This step is included to guarantee compatibility
between DL/I and Natural.
The second step performs another assembly and link of the PSBGEN source, this time using macros supplied by
Natural.
The final step executes the Natural batch utility NDPBNSB0, which uses the linked PSB module from the
previous step to create NSB control blocks which are stored on the FDIC system file. NDPBNSB0 dynamically
loads the Natural module NDLB0002, which therefore must be present in an allocated load library.

1Copyright Software AG 2003

OperationOperation

Natural requires one or more PSBs for batch and/or online processing. Depending on application requirements, the
PSB can be switched during a Natural session. Each PSB describes all user views that can be used to access DL/I
databases from Natural programs if this PSB is active. A PSB must contain one or more program communication
blocks (PCBs) for each DBD to be accessed. Since Natural only uses the single positioning option on PCBs, Natural
programs that maintain two or more independent positions in a database require a PCB (of the appropriate type) for
each separate position.

If this requirement is not fulfilled, Natural for DL/I issues the runtime error message:

NAT3789 Active PSB contains too few PCBs for program execution.

The PCB in use must have segment sensitivity and the appropriate PROCOPT parameter specified for Natural, to be
able to perform a segment update.

Nested I/O loops (FIND or READ) in Natural programs frequently require separate positions in the same database to
be maintained. To reduce the number of PCBs needed, as many I/O loops as possible should be closed before
opening subsequent I/O loops.

Copyright Software AG 20032

OperationProcedure NATPSB

Consider the following sample DL/I database:

Sample Education Database ED00DBD:

The following Natural program based on the above database requires two PCBs:

READ ED00DBD-COURSE BY COURSENO
 FIND ED00DBD-PREREQ WITH COURSENO-COURSE = COURSENO
 FIND ED00DBD-OFFERING WITH COURSENO-COURSE = COURSENO
 LOOP
 LOOP
LOOP
END

The first PCB is used to maintain position on the COURSE and PREREQ segments. A second PCB is required for
the OFFERING segment since the FIND loop has not been terminated for the PREREQ segment prior to invoking a
FIND on the OFFERING segment. By closing the first FIND loop prior to opening the second one, this program
would only require one PCB.

3Copyright Software AG 2003

Procedure NATPSBOperation

Natural selects the PCB to be used for a database request in the following manner:

1. Natural selects the first PCB in the PSB with the correct DBD name and the appropriate PROCSEQ parameter
(if applicable).

2. Natural then determines if the PCB can be used for the request or if there is a conflict due to current database
positioning.

3. If there was a positioning conflict or the PCB did not contain the correct DBD name or PROCSEQ parameter,
Natural would continue scanning the PSB.

4. If the database search request refers to a secondary index, Natural attempts to use a PCB with the corresponding
PROCSEQ parameter. If there is no PCB of this type in the PSB, Natural tries to use a PCB without the
PROCSEQ parameter. In this case, it is assumed that the INDICES parameter has been coded in the appropriate
SENSEQ statement.

5. If no eligible PCB could be found, an error message would be generated.

In general, PCBs for use by Natural can have different PROCOPT parameters. However, if there are two or more
PCBs in the PSB referring to the same DBD, these PCBs must appear consecutively in the PSB source and they must
specify the same SENSEG statements and same PROCOPT parameters. They can, however, have different
PROCSEQ parameters.

When locating an eligible PCB, Natural disregards the PROCOPT parameter of the PCB. The first free PCB is
selected independently of the PROCOPT parameter, so that if the chosen PCB has a PROCOPT that does not support
the request, an error message that corresponds to a DL/I status code is returned.

Natural assumes that all PCBs with the same DBD name and the same PROCSEQ parameter contain the same
SENSEG statements as the first PCB. If this is not true and a PCB is selected that does not contain a SENSEG
statement for the segment being referenced, an error message that corresponds to a DL/I status code is returned.

The following example PSB and Natural program demonstrate that the sequence of the PCBs, referring to the same
DBD, may affect Natural programs if the PROCOPT= parameters are different:

PCB TYPE=DB,DBDNAME=ED00DBD,PROCOPT=GO,...
SENSEG NAME=COURSE
SENSEG NAME=OFFERING,PARENT=COURSE
PCB TYPE=DB,DBDNAME=ED00DBD,PROCOPT=A,...
SENSEG NAME=COURSE

The following program requires two PCBs: the first PCB is used for the READ loop (which reads all COURSE
segments) and the second nested FIND loop (which finds one offering to a given course); the second PCB is used for
the first FIND loop (which updates a specific COURSE segment). The program does not work if the order of the two
PCBs is reversed.

READ COURSE BY COURSENO
 FIND (1) COURSE WITH COURSENO = ’120’
 UPDATE WITH TITLE = ’Natural’
 LOOP
 FIND (1) OFFERING WITH COURSENO-COURSE = COURSENO (0010)
 DISPLAY COURSENO-COURSE
 LOOP
LOOP
END

Copyright Software AG 20034

OperationProcedure NATPSB

The following figure shows the logical connections between DL/I PSBs, PCBs, sensitive segment types and Natural
DDMs:

Natural DDMs which are derived from segment descriptions in the DBD correspond to DL/I segment types.

Since each DL/I application program requires the specification of its sensitive segment types, an appropriate PSB
must be scheduled before Natural program execution. A PSB can be scheduled at the start of a Natural session or at
any time during the session.

If, in the configuration shown in the diagram above, PSB-2 has been scheduled, only the DDMs DDM1 and DDM2
are accessible to Natural application programs. If an attempt is made to use DDM5, for example, Natural for DL/I
returns the error message:

NAT3768 PCB with requested DBD not found in NSB.

5Copyright Software AG 2003

Procedure NATPSBOperation

Procedure NATDBD
Every DL/I database structure, both physical and logical, which is supposed to be used by Natural, must be
processed by the Natural batch utility NDPBNDB0.

This utility stores DL/I database information on the FDIC system file, in a form suitable for Natural. This
information is referred to as NDB control block. A batch procedure called NATDBD has been established for this
purpose.

A sample NATDBD job has been included in the source library from the installation tape. The information used to
create NDB control blocks comes from the actual DBDGEN source. It is essential that the same input is used for the
NATDBD procedure as was used for the DL/I DBDGEN. Otherwise, unpredictable results are likely.

The NATDBD job is a three step procedure:

The first step executes the normal DL/I DBDGEN procedure. This step is included to guarantee compatibility
between DL/I and Natural.
The second step performs another assembly and link of the DBDGEN source, this time using macros supplied
by Natural.
The final step executes the Natural batch utility NDPBNDB0, which uses the linked DBD module from the
previous step to create NDB control blocks which are stored on the FDIC system file. NDPBNDB0 dynamically
loads the Natural module NDLB0001, which therefore must be present in an allocated load library.

The NATDBD procedure assigns a short name of two bytes to each DL/I field; that is, to each field defined in the
DBD. All field short names are generated in the range from NA to Z9, which means that up to 13 * (26 + 10) = 468
DL/I fields can be managed per DBD. DL/I short names are generated uniquely within an NDB.

When replacing an NDB, NATDBD reassigns short names in a consistent way; that is, the same short name to the
same field name. In addition, the UDFs are maintained, where the new NDB contains the new DL/I layout followed
by the old UDF layout, which means that UDFs are not deleted by NATDBD. It is the administrator’s responsibility
to edit the segment description after NATDBD has been executed, in order to modify the UDFs accordingly.

Copyright Software AG 20036

OperationProcedure NATDBD

Using Logical Databases with Natural

The following information must be considered when using logical databases with Natural:

Execute the NATDBD procedure for a logical database only after successful execution of the procedure for the
physical databases referred to. In other words, if the input DBD is a "logical" DBD, the NDBs generated from
the "physical" DBDs must already be stored in the Natural FDIC system file to correctly generate the NDB
control blocks related to this segment.
When a segment specifying the SOURCE=keyword is processed by the NATDBD procedure, the related
"physical" DBD must already be stored in the Natural FDIC system file.
If the SOURCE=keyword is specified (in one or more segments) in a "physical" DBD, which means that one or
more logical virtual child segments are involved (recursively or not), the NATDBD procedure run against this
DBD stores the NDB structure on the Natural FDIC system file even if one or more physical DBDs referred to
by the SOURCE=keywords have not already been stored.
In this case, the logical virtual child segments whose source DBD is not yet in the Natural FDIC system file as
well as their descendants are not accessible to the user since Natural has marked these segments as inhibited. An
appropriate Natural error message is issued indicating the name(s) of the related physical DBD(s) that need to
be stored into the Natural system file.
If the logical relationship is the result of a recursive database structure, the NATDBD procedure for the physical
DBD must be run at least twice: the first time, the NDB is stored on the Natural system file with the undefined
segment marked as inhibited; the second time, the reference to the SOURCE segment is resolved.
If multiple physical databases are logically related, the NATDBD procedure must be run for each of these
physical databases and then rerun for any database that contained logical child segments marked as inhibited.
If the SOURCE=keyword is specified in a "logical" DBD and one or more source DBDs are not found in the
Natural FDIC system file while running the NATDBD procedure, the NDB structure is not stored and an
appropriate error message is returned.
If an attempt is made to generate a DDM for a segment whose NDB control blocks are not in the Natural FDIC
system file, a Natural error message is returned.

Using Index Databases with Natural

The following information must be considered when using index databases with Natural:

To access a secondary index database as data, the secondary index database must be defined as an independent
physical database to both DL/I and Natural.
The NATDBD procedure need not be executed for primary or secondary index DBDs.

7Copyright Software AG 2003

Using Logical Databases with NaturalOperation

Procedure NATUDF
The DBDGEN source usually does not define all fields within a segment. Additional segment fields called
User-Defined Fields (UDFs) can be entered as part of creating the DDMs. UDFs define the additional data in the
segment that can be referenced by a Natural program. UDFs can be generated online using Predict or the Natural
utility SYSDDM, or they can be generated in batch mode using the NATUDF procedure.

The NATUDF procedure invokes the batch utility NDPBCUDF, which stores segment description layout
information on an FDIC system file.

Important:
Before NDPBCUDF can be executed, the DL/I DBD must have been stored as an NDB on the FDIC system
file, and a DBID and FNR must have been assigned (with Predict or SYSDDM) to each segment concerned.
Otherwise, NDPBCUDF cannot read the segments concerned.

The input for this utility is provided by the segment description read from a work file. This work file contains
segment identification statements and segment field descriptions.

You can format data by using either delimiter mode (IM=D) or forms mode (IM=F); see also the IM profile
parameter in the Natural Parameter Reference documentation. In delimiter mode, the delimiter character can be used.
In forms mode (for example, if input is passed from other programs), input data fields are assumed to be in
contiguous storage and must be filled up to the internally defined full length.

One line is required for the segment identification statement, and two lines are required for each segment field
description.

The section below covers the following topics:

Segment Identification Statement
Segment Field Description

Copyright Software AG 20038

OperationProcedure NATUDF

Segment Identification Statement

One line has to be supplied for each segment being defined. The following syntax is used (the parameters must be
specified in the sequence shown below):

FUNC=(function),DBD= dbd-name ,SEGM=segment-name

function Function to be applied to the segment:

ADD to create a new segment layout;

REP to replace an existing segment layout;

MOD to add or modify fields without deleting existing fields not present in the input file;

END to indicate termination of the UDF redefinition.

dbd-name A 1 to 8 character alphanumeric DBD name; that is, the name of the DL/I DBD which owns the
segment to be defined.

segment-name A 1 to 8 character alphanumeric name of the DL/I segment to be defined.

9Copyright Software AG 2003

Segment Identification StatementOperation

Segment Field Description

The segment identification statement has to be followed by at least one segment field description. The following
syntax is used for each field to be defined (the parameters must be specified in the sequence shown below):

FUNC=FLD,NAME=fnam ,TYPE=type ,LEVEL =lev ,LENGTH=lgh ,MAXOCC=moc,VAR=var
FUNC=STR,BEGIN=begin

After each FLD card, a STR card must be coded, except for the last FLD card, which is specified with four dollar
signs ($$$$) in the field name. After this last FLD card, an END card must be coded.

fnam The name of the field being defined. This must be an alphanumeric value of 1 to 19 bytes. The value "$$$$"
closes the definition of the current segment.

type The UDF field format (1 character). The following formats can be specified: A, B, F, P, U, N, S.

lev The field level (1 digit).

lgh The field length (4 digits).

moc The maximum occurrence (3 digits) of the field (only applicable for a multiple-value field or a periodic
group).

var Possible values:

V variable field length

N fixed field length

begin The starting position of the field being redefined. This can be specified either in terms of bytes relative to
the beginning of the segment or as a field name of the DL/I field being redefined. The value must be
alphanumeric and 1 to 19 characters long (32 bytes in forms mode, as the field is 32 characters long in this
mode).

The short name is automatically assigned by the utility in the range from AA to G9, excluding EA to E9. The range
from HA to M9 is reserved for UDFs of logical child segments. Thus, up to 216 fields can be provided as input,
which is the maximum number of UDF fields.

For further information on UDF field parameters, please refer to DL/I Services.

Copyright Software AG 200310

OperationSegment Field Description

Delimiter Mode (IM=D) Example:
FUNC=REP,DBD=ED02DBD,SEGM=COURSEFUNC=FLD,NAME=GENG1,TYPE=N,LEVEL=1,LENGTH=5FUNC=STR,BEGIN=11FUNC=FLD,NAME=DUM1,TYPE=A,LEVEL=1,LENGTH=6FUNC=STR,BEGIN=TITLEFUNC=FLD,NAME=DUM2,TYPE=A,LEVEL=1,LENGTH=6FUNC=STR,BEGIN=DESCRIPNFUNC=FLD,NAME=GENG3,LEVEL=1,MAXOCC=2FUNC=STR,BEGIN=GENG1FUNC=FLD,NAME=GRU21,TYPE=N,LEVEL=2,LENGTH=1FUNC=STRFUNC=FLD,NAME=GRU22,TYPE=A,LEVEL=2,LENGTH=2FUNC=STRFUNC=FLD,NAME=GRU23,TYPE=N,LEVEL=2,LENGTH=3FUNC=STRFUNC=FLD,NAME=$$$$FUNC=REP,DBD=ED02DBD,SEGM=COURSEFUNC=FLD,NAME=DUM41,TYPE=B,LEVEL=1,LENGTH=9FUNC=STR,BEGIN=DESCRIPNFUNC=FLD,NAME=DUN2,LEVEL=1,MAXOCC=2FUNC=STR,BEGIN=TITLEFUNC=FLD,NAME=GRU21,TYPE=N,LEVEL=2,LENGTH=1FUNC=STRFUNC=FLD,NAME=GRU22,TYPE=A,LEVEL=2,LENGTH=2FUNC=STRFUNC=FLD,NAME=GRU23,TYPE=N,LEVEL=2,LENGTH=3FUNC=STRFUNC=FLD,NAME=$$$$FUNC=END

Forms Mode (IM=F) Example:

ADDDBD1 SEGM1
FLD 1FIELD-1 000A0012N000
STR
FLD 1FIELD-ANY 000A N000
STRFIELD-1
FLD 2FIELD-ANY2 000A0024N000
STR
FLD $$$$
STR
REPDBD2 SEGM2
FLD 1NEW-FIELD-NAME 000A0012N000
STR
FLD $$$$
END

11Copyright Software AG 2003

Segment Field DescriptionOperation

Sample JCL:

//NATUDF JOB
//NATUDF EXEC PGM=NATBATCH,PARM=’...’
//STEPLIB DD DSN=...
// DD DSN=...
//SYSUDUMP DD DUMMY
//CMPRINT DD SYSOUT=Y
//DDCARD DD DSN=NAT23n.SRCE(ADAPARM),DISP=SHR
//CMSYNIN DD *
LOGON SYSDDM
NDPBCUDF
FUNC=REP,DBD=ED02DBD,SEGM=COURSE
FUNC=FLD,NAME=DUM1,TYPE=A,LEVEL=1,LENGTH=6
FUNC=STR,BEGIN=TITLE
FUNC=FLD,NAME=DUM2,TYPE=A,LEVEL=1,LENGTH=6
FUNC=STR,BEGIN=DESCRIPN
FUNC=FLD,NAME=$$$$
FUNC=END
FIN

Generation of DDMs from DL/I Segment Types
DDMs that represent DL/I segment types are generated from information contained in the NDB and UDF control
blocks. These DDMs contain all fields that have been defined for the segment, both in the NDB and in the UDF.

In addition, the DDMs contain the fields from the ancestor segments that have been defined in the DBDGEN for
these segments. Ancestor segments are defined as segments that form the hierarchical path from the root segment
down to the current segment. Ancestor segment fields that might have been defined in the DBDGEN for a segment
include sequence fields, secondary index fields and search fields.

The DDM for a DL/I segment contains all fields that could be specified in the segment search argument (SSA), all
fields that are available as part of the key feedback area and any segment I/O fields as well. Each DDM, therefore,
contains all the fields that Natural requires to automatically build the concatenated key for the segment.

Once all fields have been defined for a specific segment DDM, the corresponding Natural DDM can be generated
and cataloged (stored) on the Natural FDIC system file. This is done either with Predict or with the Natural utility
SYSDDM.

If you do not have Predict installed, use the SYSDDM function DL/I Services to generate Natural DDMs from DL/I
segment types. This function is invoked from the main menu of SYSDDM.

Copyright Software AG 200312

OperationGeneration of DDMs from DL/I Segment Types

	Operation
	Procedure NATPSB
	Procedure NATDBD
	Using Logical Databases with Natural
	Using Index Databases with Natural

	Procedure NATUDF
	Segment Identification Statement
	Segment Field Description

	Generation of DDMs from DL/I Segment Types

